3.874 \(\int \frac{1}{x^7 (a+b x^6)^2 \sqrt{c+d x^6}} \, dx\)

Optimal. Leaf size=185 \[ -\frac{b^{3/2} (4 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^6}}{\sqrt{b c-a d}}\right )}{6 a^3 (b c-a d)^{3/2}}+\frac{(a d+4 b c) \tanh ^{-1}\left (\frac{\sqrt{c+d x^6}}{\sqrt{c}}\right )}{6 a^3 c^{3/2}}-\frac{b \sqrt{c+d x^6} (2 b c-a d)}{6 a^2 c \left (a+b x^6\right ) (b c-a d)}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )} \]

[Out]

-(b*(2*b*c - a*d)*Sqrt[c + d*x^6])/(6*a^2*c*(b*c - a*d)*(a + b*x^6)) - Sqrt[c + d*x^6]/(6*a*c*x^6*(a + b*x^6))
 + ((4*b*c + a*d)*ArcTanh[Sqrt[c + d*x^6]/Sqrt[c]])/(6*a^3*c^(3/2)) - (b^(3/2)*(4*b*c - 5*a*d)*ArcTanh[(Sqrt[b
]*Sqrt[c + d*x^6])/Sqrt[b*c - a*d]])/(6*a^3*(b*c - a*d)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.227679, antiderivative size = 185, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 6, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {446, 103, 151, 156, 63, 208} \[ -\frac{b^{3/2} (4 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^6}}{\sqrt{b c-a d}}\right )}{6 a^3 (b c-a d)^{3/2}}+\frac{(a d+4 b c) \tanh ^{-1}\left (\frac{\sqrt{c+d x^6}}{\sqrt{c}}\right )}{6 a^3 c^{3/2}}-\frac{b \sqrt{c+d x^6} (2 b c-a d)}{6 a^2 c \left (a+b x^6\right ) (b c-a d)}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^7*(a + b*x^6)^2*Sqrt[c + d*x^6]),x]

[Out]

-(b*(2*b*c - a*d)*Sqrt[c + d*x^6])/(6*a^2*c*(b*c - a*d)*(a + b*x^6)) - Sqrt[c + d*x^6]/(6*a*c*x^6*(a + b*x^6))
 + ((4*b*c + a*d)*ArcTanh[Sqrt[c + d*x^6]/Sqrt[c]])/(6*a^3*c^(3/2)) - (b^(3/2)*(4*b*c - 5*a*d)*ArcTanh[(Sqrt[b
]*Sqrt[c + d*x^6])/Sqrt[b*c - a*d]])/(6*a^3*(b*c - a*d)^(3/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x^7 \left (a+b x^6\right )^2 \sqrt{c+d x^6}} \, dx &=\frac{1}{6} \operatorname{Subst}\left (\int \frac{1}{x^2 (a+b x)^2 \sqrt{c+d x}} \, dx,x,x^6\right )\\ &=-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} (4 b c+a d)+\frac{3 b d x}{2}}{x (a+b x)^2 \sqrt{c+d x}} \, dx,x,x^6\right )}{6 a c}\\ &=-\frac{b (2 b c-a d) \sqrt{c+d x^6}}{6 a^2 c (b c-a d) \left (a+b x^6\right )}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )}-\frac{\operatorname{Subst}\left (\int \frac{\frac{1}{2} (b c-a d) (4 b c+a d)+\frac{1}{2} b d (2 b c-a d) x}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^6\right )}{6 a^2 c (b c-a d)}\\ &=-\frac{b (2 b c-a d) \sqrt{c+d x^6}}{6 a^2 c (b c-a d) \left (a+b x^6\right )}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )}+\frac{\left (b^2 (4 b c-5 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^6\right )}{12 a^3 (b c-a d)}-\frac{(4 b c+a d) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^6\right )}{12 a^3 c}\\ &=-\frac{b (2 b c-a d) \sqrt{c+d x^6}}{6 a^2 c (b c-a d) \left (a+b x^6\right )}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )}+\frac{\left (b^2 (4 b c-5 a d)\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^6}\right )}{6 a^3 d (b c-a d)}-\frac{(4 b c+a d) \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^6}\right )}{6 a^3 c d}\\ &=-\frac{b (2 b c-a d) \sqrt{c+d x^6}}{6 a^2 c (b c-a d) \left (a+b x^6\right )}-\frac{\sqrt{c+d x^6}}{6 a c x^6 \left (a+b x^6\right )}+\frac{(4 b c+a d) \tanh ^{-1}\left (\frac{\sqrt{c+d x^6}}{\sqrt{c}}\right )}{6 a^3 c^{3/2}}-\frac{b^{3/2} (4 b c-5 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^6}}{\sqrt{b c-a d}}\right )}{6 a^3 (b c-a d)^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.537189, size = 163, normalized size = 0.88 \[ \frac{\frac{a \sqrt{c+d x^6} \left (a^2 d+a b \left (d x^6-c\right )-2 b^2 c x^6\right )}{x^6 \left (a+b x^6\right ) (b c-a d)}+\frac{b^{3/2} c (5 a d-4 b c) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^6}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{3/2}}+\frac{(a d+4 b c) \tanh ^{-1}\left (\frac{\sqrt{c+d x^6}}{\sqrt{c}}\right )}{\sqrt{c}}}{6 a^3 c} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^7*(a + b*x^6)^2*Sqrt[c + d*x^6]),x]

[Out]

((a*Sqrt[c + d*x^6]*(a^2*d - 2*b^2*c*x^6 + a*b*(-c + d*x^6)))/((b*c - a*d)*x^6*(a + b*x^6)) + ((4*b*c + a*d)*A
rcTanh[Sqrt[c + d*x^6]/Sqrt[c]])/Sqrt[c] + (b^(3/2)*c*(-4*b*c + 5*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^6])/Sqrt[
b*c - a*d]])/(b*c - a*d)^(3/2))/(6*a^3*c)

________________________________________________________________________________________

Maple [F]  time = 0.072, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{7} \left ( b{x}^{6}+a \right ) ^{2}}{\frac{1}{\sqrt{d{x}^{6}+c}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^7/(b*x^6+a)^2/(d*x^6+c)^(1/2),x)

[Out]

int(1/x^7/(b*x^6+a)^2/(d*x^6+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{6} + a\right )}^{2} \sqrt{d x^{6} + c} x^{7}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^6 + a)^2*sqrt(d*x^6 + c)*x^7), x)

________________________________________________________________________________________

Fricas [A]  time = 2.36195, size = 2525, normalized size = 13.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(((4*b^3*c^3 - 5*a*b^2*c^2*d)*x^12 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^6)*sqrt(b/(b*c - a*d))*log((b*d*x^6
 + 2*b*c - a*d - 2*sqrt(d*x^6 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^6 + a)) + ((4*b^3*c^2 - 3*a*b^2*c*d -
 a^2*b*d^2)*x^12 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^6)*sqrt(c)*log((d*x^6 + 2*sqrt(d*x^6 + c)*sqrt(c) +
 2*c)/x^6) - 2*((2*a*b^2*c^2 - a^2*b*c*d)*x^6 + a^2*b*c^2 - a^3*c*d)*sqrt(d*x^6 + c))/((a^3*b^2*c^3 - a^4*b*c^
2*d)*x^12 + (a^4*b*c^3 - a^5*c^2*d)*x^6), -1/12*(2*((4*b^3*c^3 - 5*a*b^2*c^2*d)*x^12 + (4*a*b^2*c^3 - 5*a^2*b*
c^2*d)*x^6)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^6 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^6 + b*c)) - (
(4*b^3*c^2 - 3*a*b^2*c*d - a^2*b*d^2)*x^12 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^6)*sqrt(c)*log((d*x^6 + 2
*sqrt(d*x^6 + c)*sqrt(c) + 2*c)/x^6) + 2*((2*a*b^2*c^2 - a^2*b*c*d)*x^6 + a^2*b*c^2 - a^3*c*d)*sqrt(d*x^6 + c)
)/((a^3*b^2*c^3 - a^4*b*c^2*d)*x^12 + (a^4*b*c^3 - a^5*c^2*d)*x^6), -1/12*(2*((4*b^3*c^2 - 3*a*b^2*c*d - a^2*b
*d^2)*x^12 + (4*a*b^2*c^2 - 3*a^2*b*c*d - a^3*d^2)*x^6)*sqrt(-c)*arctan(sqrt(d*x^6 + c)*sqrt(-c)/c) - ((4*b^3*
c^3 - 5*a*b^2*c^2*d)*x^12 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^6)*sqrt(b/(b*c - a*d))*log((b*d*x^6 + 2*b*c - a*d
- 2*sqrt(d*x^6 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^6 + a)) + 2*((2*a*b^2*c^2 - a^2*b*c*d)*x^6 + a^2*b*c
^2 - a^3*c*d)*sqrt(d*x^6 + c))/((a^3*b^2*c^3 - a^4*b*c^2*d)*x^12 + (a^4*b*c^3 - a^5*c^2*d)*x^6), -1/6*(((4*b^3
*c^3 - 5*a*b^2*c^2*d)*x^12 + (4*a*b^2*c^3 - 5*a^2*b*c^2*d)*x^6)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^6 + c)*(
b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^6 + b*c)) + ((4*b^3*c^2 - 3*a*b^2*c*d - a^2*b*d^2)*x^12 + (4*a*b^2*c^2
- 3*a^2*b*c*d - a^3*d^2)*x^6)*sqrt(-c)*arctan(sqrt(d*x^6 + c)*sqrt(-c)/c) + ((2*a*b^2*c^2 - a^2*b*c*d)*x^6 + a
^2*b*c^2 - a^3*c*d)*sqrt(d*x^6 + c))/((a^3*b^2*c^3 - a^4*b*c^2*d)*x^12 + (a^4*b*c^3 - a^5*c^2*d)*x^6)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**7/(b*x**6+a)**2/(d*x**6+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.19547, size = 362, normalized size = 1.96 \begin{align*} \frac{1}{6} \, d^{3}{\left (\frac{{\left (4 \, b^{3} c - 5 \, a b^{2} d\right )} \arctan \left (\frac{\sqrt{d x^{6} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{{\left (a^{3} b c d^{3} - a^{4} d^{4}\right )} \sqrt{-b^{2} c + a b d}} - \frac{2 \,{\left (d x^{6} + c\right )}^{\frac{3}{2}} b^{2} c - 2 \, \sqrt{d x^{6} + c} b^{2} c^{2} -{\left (d x^{6} + c\right )}^{\frac{3}{2}} a b d + 2 \, \sqrt{d x^{6} + c} a b c d - \sqrt{d x^{6} + c} a^{2} d^{2}}{{\left (a^{2} b c^{2} d^{2} - a^{3} c d^{3}\right )}{\left ({\left (d x^{6} + c\right )}^{2} b - 2 \,{\left (d x^{6} + c\right )} b c + b c^{2} +{\left (d x^{6} + c\right )} a d - a c d\right )}} - \frac{{\left (4 \, b c + a d\right )} \arctan \left (\frac{\sqrt{d x^{6} + c}}{\sqrt{-c}}\right )}{a^{3} \sqrt{-c} c d^{3}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^7/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="giac")

[Out]

1/6*d^3*((4*b^3*c - 5*a*b^2*d)*arctan(sqrt(d*x^6 + c)*b/sqrt(-b^2*c + a*b*d))/((a^3*b*c*d^3 - a^4*d^4)*sqrt(-b
^2*c + a*b*d)) - (2*(d*x^6 + c)^(3/2)*b^2*c - 2*sqrt(d*x^6 + c)*b^2*c^2 - (d*x^6 + c)^(3/2)*a*b*d + 2*sqrt(d*x
^6 + c)*a*b*c*d - sqrt(d*x^6 + c)*a^2*d^2)/((a^2*b*c^2*d^2 - a^3*c*d^3)*((d*x^6 + c)^2*b - 2*(d*x^6 + c)*b*c +
 b*c^2 + (d*x^6 + c)*a*d - a*c*d)) - (4*b*c + a*d)*arctan(sqrt(d*x^6 + c)/sqrt(-c))/(a^3*sqrt(-c)*c*d^3))